The crystal structure of KAsF₆. By RAYMOND B. ROOF JR., Mineralogical Laboratory, University of Michigan, Ann Arbor, Michigan, U.S.A.

(Received 2 May 1955 and in revised form 1 July 1955)

Potassium arsenic hexafluorine is the first of an extensive series of arsenic-fluorine compounds being prepared for investigation by the Chemistry Department at the University of Michigan. The purpose of the investigation of the crystal structure of $KAsF_6$ was to establish the interatomic distance between As and F and to examine the role of K in the bonding of the crystal.

Minute single crystals were grown from a water solution and these crystals exhibited the symmetry $\overline{3}$. Weissen-

Table 1. Comparison of observed and calculated powder line intensities

	(0	Cu Ka radiation)	
Line No.	θ (°)	hk.l	$F_o^2 p$	$F_c^2 p$
1	9.2	10.1	30	25
2	$12 \cdot 1$	11.0	69	82
3	14.1	01.2	72	61
4	15.3	02.1	27	33
5	18.7	00.3, 20.2	27	30
6	19.7	21.1, 23.1	15	8
7	21.3	30.0	21	19
8	22.6	12.2, 11.3,	228	285
		12.3, 13.2		
9	$24 \cdot 8$	22.0	48	67
10	$26 \cdot 1$	10.4	24	25
11	26.7	13.1, 14.1	42	34
12	29.0	41.2, 03.3,	105	113
		31.2, 30.3,		
		02.4		
13	32.0	04.2, 22.3,	198	155
		21.4, 31.1		
14	32.6	$32.1, 5\overline{2}.1$	24	28
15	33.7	41.0, 14.0	78	72
16	34.6	23.2, 25.2,	81	69
		01.5		
17	35.5	20.5	15	18
18	37.4	05.1, 13.4,	54	36
		14.4		
19	3 9·0	33.0, 12.5,	63	86
		13.5		
20	39.8	00.6, 50.2,	90	97
		41.3, 14.3		

berg photographs established the space group as $R\overline{3}$. The hexagonal unit cell lattice constants are

$$a = 7.352, c = 7.235 \text{ A}$$
 .

From a measured density of 3.29 g.cm.⁻³ the number of formula weights per unit cell was determined as Z = 3. Intensity measurements were made by a photodensitometer trace of a powder photograph of the material which was taken with Cu K α radiation.

Table 1 compares the observed and calculated powder line intensities. The observed intensities have been corrected for the Lorentz and polarization factors. The factor p is the multiplicity factor. An experimentally determined temperature factor, B = 0.7 Å², was applied to the calculated intensities. The interpretation of the powder photograph is also given.

The crystal structure of \overline{KAsF}_6 can be described as follows:

 $(0, 0, 0), (\frac{1}{3}, \frac{2}{3}, \frac{2}{3}), (\frac{2}{3}, \frac{1}{3}, \frac{1}{3}) + 1$ As at 0, 0, 0; 1 K at 0, 0, $\frac{1}{2}$; 6 F at x, y, z etc.,

where

x = 0.117, y = 0.234, z = 0.152.

These coordinates were determined from Fourier projections on 00.1 for x and y and $\overline{12.0}$ for z. The As-F distance was determined to be 1.85 Å. The value of the residual computed from the structure factors is R=0.19.

The six F atoms are arranged in a very slightly distorted octahedral coordination around the arsenic atom. The attractive forces of the K atom have caused the F atoms to move parallel to the 111 direction of the octahedron so that the F-As-F angle is reduced to 88°. The structure can be compared to that of an ideal simple cubic structure (the AsF₆ groups at the corners of the cube and the K atom at the center of the cube) in which the attractive forces of the K atom have reduced the c/aratio of the ideal cubic by 20%.

.Acta Cryst. (1955). 8, 739

Crystallographic data for dioxospartalupine hydrate, C₁₅H₂₂N₂O₂. H₂O.* By A. E. LESSOR, JR.,[†] Chemistry Department, Indiana University, Bloomington, Indiana, U.S.A.

(Received 15 July 1955)

Crystals grown from a solution in hot n-hexane were long needles with well formed pinacoids $\{001\}$. Precession and Weissenberg photographs were taken with the crystal

† Present address: Chemistry Department, University of Cincinnati, Cincinnati, Ohio, U.S.A.

mounted parallel to the needle axis, and gave the orthorhombic unit-cell dimensions:

$$a = 6.19, b = 10.39, c = 21.92$$
 Å

There are four molecules per unit cell. Density: calculated 1.32 g.cm.^{-3} ; observed (flotation) 1.28 g.cm.^{-3} .

Reflections of types (h00), (0k0) and (00l) were ob-

^{*} Contribution No. 681, Chemistry Department, Indiana University.